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Abstract

When processing and analyzing empirical data, researchers regularly face choices that may appear arbitrary
(e.g., how to define and handle outliers). If one chooses to exclusively focus on a particular option and conduct
a single analysis, its outcome might be of limited utility. That is, one remains agnostic regarding the general-
izability of the results, because plausible alternative paths remain unexplored. A multiverse analysis offers a
solution to this issue by exploring the various choices pertaining to data-processing and/or model building,
and examining their impact on the conclusion of a study. However, even though multiverse analyses are argu-
ably less susceptible to biases compared to the typical single-pathway approach, it is still possible to selectively
add or omit pathways. To address this issue, we outline a novel, more principled approach to conducting mul-
tiverse analyses through crowdsourcing. The approach is detailed in a step-by-step tutorial to facilitate its
implementation. We also provide a worked-out illustration featuring the Semantic Priming Across Many
Languages project, thereby demonstrating its feasibility and its ability to increase objectivity and transparency.

Translational Abstract

When processing and analyzing data, researchers often face seemingly small but important decisions (e.g., how
to deal with outliers) that can significantly affect results. Focusing on just one way of analyzing the data may
limit the usefulness and generalizability of the findings, since other reasonable approaches are left unexamined.
A method known as multiverse analysis tackles this issue by systematically exploring a range of plausible
choices to see how they influence conclusions. However, even multiverse analyses can be vulnerable to
bias if researchers selectively include or exclude certain options. To help mitigate this risk, we introduce a
new, structured approach that uses crowdsourcing to make multiverse analyses more objective and transparent.
We provide a clear, step-by-step tutorial to help researchers apply this method in practice, and we showcase its

use through a real-world example from the Semantic Priming Across Many Languages project.

Keywords: multiverse analysis, generalizability, tutorial, data-analytic flexibility, consensus

The so-called crisis of confidence in behavioral sciences, includ-
ing psychology (Pashler & Wagenmakers, 2012), has prompted the
field to do some (much-needed) self-evaluation. The last decade has
shown that far too many findings turned out to be fragile and unre-
plicable (Nosek et al., 2022), which has inspired various initiatives to
improve transparency and rigor (see van Ravenzwaaij et al., 2023 for
an overview). Among other things, researchers have become increas-
ingly aware of the notion that there is typically not a single path from
a study’s raw data to its conclusion (e.g., Silberzahn et al., 2018).
Instead, one needs to make a number of decisions along the way,
sometimes without a single clear-cut, “right” answer. For example,
there have been many suggestions for dealing with missing data
(Schafer & Graham, 2002), and even though some missing data
approaches are arguably suboptimal (e.g., listwise deletion, see
van Ginkel et al., 2020), there is not one singular superior option
(Little et al., 2014). This line of reasoning not only holds for missing
data, but also applies to a variety of other decisions in the data-
processing and analysis stream, such as outlier detection, exclusion
criteria, and transformations.'

That being said, many empirical studies in psychology tend to report
and base their conclusions on the outcome of a single data analysis
pathway. To continue with the previous example, researchers often
choose one approach to deal with missing values, outliers, data exclu-
sions, transformations, and so on, based on, for instance, lab standards,
previous studies, personal preferences, or, more problematically, the
desire to obtain a particular result (e.g., p-hacking; Simmons et al.,
2011). As a consequence, it is unclear how robust or fragile those
research findings are. In other words, one remains agnostic as to the
extent to which other plausible data-processing and analysis choices
would have yielded similar or different outcomes.

! In addition, a lot of theories in psychology are argued to be weak in that
they do not allow well-aligned, testable predictions (e.g., Fried, 2020).
Indeed, researchers have been providing suggestions on how to formalize ver-
bal theories (e.g., van Rooij & Blokpoel, 2020). Without formalization, the-
ories do not provide many constraints on what are considered suitable
pathways. Despite its importance, theory formalization is beyond the scope
of the present article, though.
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To address this issue, one can perform a so-called multiverse anal-
ysis (Steegen et al., 2016). The general idea is to unveil the decisions
that researchers must make during the data-processing and analysis
phases to answer a certain research question. In particular, a multi-
verse analysis aims to explore the potential impact that different
plausible choices might have on the outcome of a study.” To do
s0, one systematically implements all possible combinations of envi-
sioned decisions, leading to a multitude of unique pathways, also
referred to as the garden of forking paths (Gelman & Loken,
2014). For example, say one has identified two different ways of han-
dling missing data (e.g., multiple imputation and full information
maximum likelihood), three approaches to deal with outliers (e.g.,
no outlier removal, removing z scores >2.5 or <—2.5, removing z
scores >3 or <—3), and four data exclusion procedures (e.g., no
exclusion, exclusion of incorrect responses, exclusion of failed
attention checks, both). Then one would get 2 x 3 x 4 = 24 differ-
ent pathways (an example of one of these 24 pathways would involve
multiple imputation, no outlier removal, and exclusion of incorrect
responses). If all or most of the resulting pathways yield qualitatively
similar results, one might conclude that the effect of interest is rela-
tively robust to different data-processing and analysis choices,
whereas results that show considerable variability between different
pathways may suggest that the effect is too fragile to be considered
relevant, or that there may be one or more moderators in play.3

A crucial aspect of the multiverse approach is to properly justify the
various data-processing and analysis pathways (Del Giudice &
Gangestad, 2021). Including poorly motivated or inferior choices
could dilute the findings and create the misleading impression that a
certain effect is more or less robust than it actually is. The reverse
can also be true; one could (accidentally) exclude relevant pathways
that might have yielded valuable insights. Furthermore, researchers
might have differing views on whether certain alternatives are truly
equivalent from a theoretical or statistical point of view.
Consequently, one might question whether it is appropriate to incor-
porate such pathways in the multiverse (see e.g., Heyman et al., 2022).

In sum, even though the multiverse approach has been successfully
applied to yield new insights (e.g., Credé & Phillips, 2017), it is, in con-
trast to Steegen and colleagues’ advice (2016), rarely done in a very sys-
tematic fashion (though see Loenneker et al., 2024 for an example of a
more principled approach). The present article seeks to address this
issue by providing a tutorial on conducting multiverse analyses in a
more structured and systematic manner. We break the process down
into four steps from inception to the eventual multiverse (i.e., all unique
data-processing and analysis pathways; see Figure 1 for a summary of
the procedure). In addition, we provide a concrete example (a “case
study,” hereafter) for which we go through all the steps to answer a par-
ticular research question. Note that study design and data collection
itself are not part of this overview. That does not imply that methodo-
logical variability is irrelevant, though (see e.g., Harder, 2020).
However, methodological decisions do not directly affect the process
of developing the multiverse. Moreover, multiverse analyses are regu-
larly conducted on preexisting data sets, provided they are properly doc-
umented and available in a format that is raw enough to allow for
different data-processing options. Our case study illustrating the four-
step multiverse approach also relies on existing data collected in the
context of the Semantic Priming Across Many Languages project
(Buchanan et al., in press), and will seek to examine whether item-level
semantic priming effects correlate across two different languages (i.e.,
English and German). Before turning to the case study, we will first

provide a general description of the four steps to serve as guidelines
for future applications in any domain of psychology.

Multiverse Analysis Guidelines
Step 1: Specifying the Research Question(s)

Although this may sound trivial, specifying the research question(s)
is an important first step that should not be overlooked. There are three
aspects one needs to consider that will ultimately determine what the
multiverse will look like. Firstly, one should clearly delineate the phe-
nomenon or effect of interest, which can be complicated in its own
right (see also Footnote 1). This is an important aspect of any empir-
ical study, but as it is not specific to multiverse analyses, we will not
further discuss the matter here. Secondly, a multiverse analysis can
involve decisions pertaining to data-processing and data analysis,
but it is also possible to exclusively focus on the former (also referred
to as a data multiverse; see Steegen et al., 2016) or the latter (model
multiverse; e.g., Harder, 2020). As an example of a data-processing
choice, one could consider the above-mentioned decision to remove
participants who failed an attention check, whereas deciding whether
to omit a particular covariate from the statistical model would be an
analysis choice. That said, some decisions are not easily classified
in these categories, and one can sometimes achieve a similar goal
via a data-processing step or an analysis choice. Handling outliers,
for instance, can be achieved by processing the data in a certain
way (e.g., removing z scores >3 or <—3), or by performing a partic-
ular type of analysis (e.g., robust regression) (Thériault et al., 2024).

There may be various reasons to limit the scope of the multiverse
and focus exclusively on data-processing or analysis choices. One
could be merely practical, to limit the number of pathways or avoid
redundancy in the pathways (e.g., combining the option to remove
participants who failed an attention check and the option to include
performance on the attention check as a covariate would not be sensi-
ble). Alternatively, it could be related to the third and final aspect to
consider, which is the reason(s) for undertaking a multiverse analysis.
Here, we distinguish five nonmutually exclusive motives: assessing
robustness, examining boundary conditions, generating hypotheses,
increasing transparency, and improving a study’s methodology. We
will discuss each of them in turn and describe how they might influ-
ence the outlook of the multiverse. Note, however, that there might be
other reasons to perform a multiverse analysis. As such, the goal of
this section is not to provide an exhaustive overview, but rather to

2 Note that there are similar proposals such as specification curve analysis
(Simonsohn et al., 2020), vibration of effects analysis (Patel et al., 2015 ), and
multimodel analysis (Young & Holsteen, 2017), yet they differ in scope, pro-
cess and presentation of results. In addition, so-called sensitivity analyses are
sometimes conducted to check if the key conclusions are robust to some of
the assumptions of the primary analysis, though their extent is typically
much more limited compared to the multiverse approach (an example of
such an analysis can be found in Ratcliff, 1993, which looked at the impact
of different outlier handling methods for reaction times). Another approach of
dealing with the flexibility offered by the myriad of processing and analysis
options is preregistration (i.e., specifying the entire pipeline from data collec-
tion to outcome in advance; see Nosek et al., 2018). However, preregistration
in itself does not directly address the question whether the findings are gen-
eralizable to alternative pathways (Steegen et al., 2016). One could of course
consider preregistering a multiverse analysis to achieve that goal as well.

31t is important to point out that the conclusion depends on the scope and
purpose of the multiverse analysis. We will revisit this in Step 1: Specifying
the Research Question(s) section.
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CROWDSOURCING MULTIVERSE ANALYSES

Figure 1

Step-by-Step Overview of the Crowdsourced Multiverse Approach

Steps

Actions

Step 1: Specifying the research
question(s)

Determining the scope
- Data-processing
- Data-analysis
- Both

Determining the objective(s)
- Assessing robustness
- Establishing boundary conditions
- Generating hypotheses
- Increasing transparency
- Improving a study’s methodology

Step 2: Pathway elicitation

Systematic review
- ldentifying records meeting inclusion criteria
- Coding pathways (two or more coders)

Elicitation survey
- Defining inclusion criteria
- Designing survey (open-ended questions)
- Recruiting experts
- Coding experts’ responses (two coders)

Step 3: Synthesizing elicited pathways

Breaking pathways down into decisions and grouping
those into categories’

Determining a default order of decisions

Combining decisions into a “full” multiverse

Step 4: Pathway validation

Validation survey

- Defining inclusion criteria

- Designing validation survey with the following elements:
o Appropriateness of decisions within categories
o Single most preferred option per category (if desired)
o Order of decisions
o Expertise, experience, comprehension questions

- Recruiting experts

Shaping multiverse analysis/analyses based on input
- Defining cutoff(s) or sampling procedure for the
inclusion of decisions in the multiverse
- Specifying (different) order(s) of those decisions
- Deciding whether to include a many-analyst-type
approach

* If one does both a systematic review and conducts an elicitation survey in Step 2, one could decide to break
down pathways into separate decisions as part of Step 2. For example, in the case study, we first performed a
systematic review and based on those results created decision categories, which in turn facilitated the coding of

the subsequent elicitation survey.

illustrate that one might incorporate different pathways depending on
the purpose of the multiverse analysis.

Robustness

When the aim is to establish whether a certain phenomenon or
effect is robust, one should make sure that data-processing and anal-
ysis pathways are as equivalent as possible. For example, in some
multiverse analyses, researchers have included pathways in which
covariates were added or removed from the statistical model that
also included one critical predictor of interest (e.g., Credé &

Phillips, 2017; Heyman et al., 2022). Even though this may yield
valuable insights, it changes the nature of the effect being studied
(i.e., the interpretation of the critical predictor). As a consequence,
it would be inappropriate to treat the outcomes of such nonequiva-
lent pathways as indicators of how robust the effect is (Del
Giudice & Gangestad, 2021). In particular, Del Giudice and
Gangestad argue that “when alternative analyses include different
sets of covariates, the effects they test often cease to be logically
and/or statistically equivalent” (p. 5). From this point of view, sys-
tematically examining whether inference hinges on the inclusion
or exclusion of particular covariates, such as in the vibration of
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effects method (Patel et al., 2015), may yield relevant information,
but it would not to be considered a viable approach to assessing
robustness. As such, if assessing robustness is the sole purpose,
one could opt to exclude these pathways from the multiverse and
let theoretical considerations determine such choices. If there is
uncertainty about the causal model, Del Giudice and Gangestad pro-
pose to “acknowledge[d] and address[ed] [it] from a theoretically
informed standpoint” (p. 6). Note that many alternative data-analysis
choices may result in nonequivalent pathways, so when the goal is to
assess robustness, it may be sensible to construct a purely data mul-
tiverse. That said, some data-analysis choices are compatible with
the goal of evaluating robustness (e.g., using different random
seeds), and some data-processing choices can yield nonequivalent
pathways as well (e.g., when data exclusion/inclusion significantly
impacts precision and statistical power). Hence, there is no
one-to-one relation between the scope and the purpose of a multi-
verse analysis. However, if robustness is the multiverse analysis’
objective, then one might want to focus exclusively on data-
processing choices as many data-analysis choices would presumably
result in nonequivalent pathways.

Boundary Conditions

Alternatively, or additionally, one might be interested in determin-
ing boundary conditions of the effect: Can we discover any modera-
tors, any circumstances under which the effect weakens, strengthens,
disappears, or even changes direction? In this case, one might pre-
cisely be looking to include nonequivalent pathways, or pathways
of which it is uncertain whether they are equivalent. As such, one
could include both data-processing and data-analysis choices, pro-
vided it is feasible to combine them from a practical point of view.

Hypothesis Generation

So far, both objectives for undertaking a multiverse analysis
involve the specification of an effect of interest. However, one
could also use a multiverse analysis in a more exploratory fashion
to generate hypotheses. Similar to the goal of examining boundary
conditions, one might want to include a wide range of pathways,
which may or may not be equivalent and which may involve both
data-processing and data-analysis choices. In fact, hypothesis gener-
ation arguably gives rise to the most diverse set of choices, but that
does make it more challenging from a practical point of view when
systematically combining all decisions into separate pathways.

Transparency

One could also opt to perform a multiverse analysis for the sake of
transparency. This might not be the sole or even the primary reason
to perform a multiverse analysis, yet if transparency is a (secondary)
goal, it could impact what pathways are included. When introducing
multiverse analyses, Steegen et al. (2016) reanalyzed data from
Durante et al. (2013) using pathways that the latter author group
had applied to similar data in other papers. Even though there was
no reason to suspect it in this particular case, researchers sometimes
exploit the inherent flexibility in data-processing and analysis
choices to obtain a desirable result (John et al., 2012). The latter
can become apparent when the same authors use different analysis
pipelines across or within papers. Though it is by no means a
clear indicator of so-called questionable research practices (John

et al., 2012; Simmons et al., 2011)—such discrepancies can arise
for various reasons (e.g., a reviewer’s request)—it can be informative
to explore their potential impact for the sake of transparency. From
this point of view, it does not matter whether the pathways are equiv-
alent or not. One might even argue to include some suboptimal path-
ways, for instance, when they are frequently used in the field, if only
to explore how they could affect the conclusions.

Methodological Improvement

Finally, some multiverse analyses can be undertaken to (also) refine
a study’s methodology and/or determine which pathway(s) yield the
highest data quality. For example, one might not (exclusively) be inter-
ested in an effect as such, but in the reliability of the dependent variable
(e.g., Garre-Frutos et al., 2024; Parsons, 2022). Particularly, one might
wonder which data-processing choices yield the highest reliability esti-
mates, and should therefore be preferred.

Taken together, there are a number of different reasons for under-
taking multiverse analyses, where assessing the robustness of an
effect is presumably the most prevalent one within psychology.
The five motives discussed above do not exhaust all possibilities
(e.g., one might also conduct a multiverse analysis for educational
purposes; Heyman & Vanpaemel, 2022), nor are they mutually
exclusive (see e.g., Steegen et al., 2016). Along the same lines, it
is possible that one conducts a multiverse analysis for the sake of
one goal (e.g., transparency), yet one ends up accomplishing another
goal as well (e.g., drawing a conclusion about the robustness of an
effect or about its boundary conditions). The main take-home mes-
sage of this section is that there are different motivations for under-
taking a multiverse analysis, which determines to a certain extent
what pathways to incorporate. Hence, a multiverse’s purpose is
important to consider when eliciting or validating pathways (i.e.,
Steps 2 and 4, respectively).

Step 2: Pathway Elicitation

In analogy to prior elicitation in Bayesian statistics, where one
construes prior distributions based on experts’ input (Stefan et al.,
2022), one could crowdsource the pathways of a multiverse analysis.
We envision two, potentially complementary, approaches to accom-
plish this step. One involves a thorough literature search similar to
that of a systematic review to identify relevant articles on the topic
of interest (see, e.g., Siddaway et al., 2019, for instructions), or
one could use the studies analyzed in a recent systematic review
on the matter, if one is available. Contrary to a typical systematic
review, the goal is not to extract the outcome of the selected studies
(e.g., effect size estimate), but rather the data-processing and analy-
sis choices that were made in those papers to arrive at that particular
outcome (see e.g., Loenneker et al., 2024). If possible, it would be
advisable to let two (or more) researchers with expertise in that spe-
cific domain code the selected articles in terms of what steps were
taken to process and analyze the data. By having two coders, one
could assess the interrater agreement and solve any discrepancies.
However, one potential issue is that analysis pipelines are sometimes
incorrectly or incompletely reported, as demonstrated by failures to
computationally reproduce key results from papers in psychology
(Artner et al., 2021; Hardwicke et al., 2018). Consequently, certain
extracted pathways may be misrepresented, or one might miss some
potentially relevant pathways. The former will be addressed in Step
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4, whereas one can compensate for the latter via the second elicita-
tion method, to which we turn next.

Rather than relying on a description of the data-processing and
analysis choices in articles, one could also go to the source, and
directly ask authors/experts. However, this would depend on
researchers accurately recalling what they did. As an alternative,
one could ask experts which analysis pipeline they prefer. This
objective can be accomplished via a survey prompting experts to
describe as concretely as possible the pathway(s) they have used
in the past and/or consider suitable to answer a particular research
question (see Step 1). Some might argue that access to the data is
necessary to accomplish this properly (e.g., to check assumptions),
but then one risks biasing the pathways that experts might put
forth. Luckily, one could somewhat accommodate this by using sim-
ilar, existing data sets or synthetic data (Grund et al., 2022).

In essence, the latter idea of polling experts is similar to the many-
analyst approach used by Silberzahn et al. (2018; see also e.g.,
Botvinik-Nezer et al., 2020; Coretta et al., 2023; Hoogeveen et al.,
2023), in which research teams independently analyze the same
data set to answer the same research question, resulting in various
analysis pipelines each with its own outcome. A key difference,
though, is that, for the current purposes, no actual data analysis is
required from the experts involved. It only asks them to specify anal-
yses they either have carried out or deem appropriate to answer a cer-
tain research question. As such, it is less demanding for potential
contributors, and more sustainable than a full-blown many-analyst
approach. It does mean that the bulk of the work is shifted to the
core team initiating the multiverse analysis. That is, the experts’
responses need to be processed, similar to extracting the pathways
from articles (see above). It could also introduce some discrepancies
between the experts’ intended analyses and the core team’s transla-
tions to analysis code.

With regards to the experts’ selection criteria, one first needs to
carefully consider what the inclusion criteria are (Aczel et al.,
2021), such as whether they need to have experience analyzing sim-
ilar data, hold a particular academic degree (e.g., a PhD), or have a
certain amount of publications in the field. Casting a wide net can
yield more diverse, unorthodox pathways, but it could also diminish
the quality. Conversely, more restrictive requirements might lead to a
low number of respondents and a more narrow perspective, yet the
resulting pathways are presumably more adequate in general. Note
that further limiting the scope to, say, only a handful of close col-
leagues, could introduce bias as the selected group may not ade-
quately represent the entire population of experts.

Depending on how one decides to tackle this issue, there are differ-
ent approaches to recruiting experts. In case, a systematic literature
review has been conducted, one could contact the corresponding
authors of the respective studies. This option at least guarantees
some level of familiarity with the topic. Alternatively, when no review
has been undertaken, the research team initiating the multiverse
analysis possibly knows some experts in the field who could be inter-
ested in contributing. One could also launch a broader call via profes-
sional networks and social media, as has been done in the past to
recruit researchers for many-analysts or many-labs projects (e.g.,
Botvinik-Nezer et al., 2020; Coretta et al., 2023; Hoogeveen et al.,
2023; Silberzahn et al., 2018). It is important to keep in mind that
the latter approach might invite more diverse and potentially less expe-
rienced contributors, depending on how it is implemented. Finally,
employing a snowball procedure could also be fruitful, meaning

that contributors could nominate other researchers, similar to suggest-
ing reviewers for a manuscript. For example, the pathway elicitation
survey could have a separate section in which one could enter the
names of people with relevant expertise who could subsequently be
asked to participate in the survey.

Taken together, both approaches — coding articles after a system-
atic literature review and surveying experts — will give rise to a
range of data-processing and analysis options. In the next step,
that input needs to be synthesized.

Step 3: Synthesizing Elicited Pathways

The goal of this step is to combine the input from the elicitation
process and form a “full,” yet preliminary multiverse. Hence, one
should break down the obtained analysis pathways in order to iden-
tify every individual data-processing and analysis choice. Next, one
ought to arrange these into decision categories. For instance, one cat-
egory could comprise all approaches that have been used or have
been proposed to deal with outliers; another category could be all
procedures to handle missing data, and so on. The nature and number
of these categories depend on the specific domain, so it is difficult to
provide an exhaustive list. However, Wicherts and colleagues’
inventory of researcher degrees of freedom could offer some guid-
ance in that regard (Wicherts et al., 2016). After having grouped
all identified data-processing and analysis choices into categories,
one should combine them to form a full multiverse, taking into
account two important aspects, order and compatibility, which we
will discuss in turn.

The order in which particular data-processing and analysis steps
are taken can impact the eventual outcome (Loenneker et al.,
2024). For instance, whether a certain datapoint is considered an out-
lier according to a given criterion might depend on when one carries
out this procedure, say, before or after handling missing data. So, to
construct the full multiverse, one needs to specify a suitable
sequence for the different categories and their respective options.
To this end, one could use the input of the elicitation phase.
However, research shows that such information is often not provided
in articles (Loenneker et al., 2024). This issue can be addressed in
the elicitation survey by explicitly asking contributors to specify
the order of the steps, but there might still be some ambiguity
remaining. Furthermore, experts might disagree about the ideal
order. So, at this point, one could consider a number of options.
One is to pick the most prevalent order across articles and experts
to construct the preliminary multiverse. However, in some situa-
tions, there may be so much variability that it can be difficult to distill
the most prevalent order, as most or all pathways may be unique in
this respect. If that is the case, the core team might need to make
some decisions themselves, which will subsequently need to be ver-
ified as part of the pathway validation step (see below). Another
option could be to combine all identified choices with all (or
some) of the orderings in which the choices occurred, again based
on the review of articles and/or elicitation survey. Although such
an approach is arguably more objective, it may not be feasible, par-
ticularly when most pathways involve a unique ordering of steps.

Secondly, the team could assess whether all data-processing and
analysis choices can be reasonably combined (i.e., compatibility).
For instance, say that one data exclusion option involves using a
dichotomous variable as a criterion (e.g., remove all data from left-
handed participants), and that one of the data modeling options is to
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include the same variable as a covariate. The pathways involving the
combination of those decisions would not be meaningful. Similarly,
combining certain decisions might result in a highly complex model
that may not be justified by the data (Bates et al., 2015). Hence one
could omit these respective pathways or code the resulting outcomes
as “not applicable.” That being said, one could also opt to postpone
this assessment until one actually needs to run the multiverse analy-
sis after Step 4 (see below).

Ultimately, the end-product of this step is a full multiverse of path-
ways. But some concerns remain. First, the procedure outlined above
involves some subjective decisions from the part of the core team.
Second, when merging all identified options, the resulting multi-
verse might contain thousands or even millions of unique pathways,
which could pose computational challenges in terms of actually run-
ning these analyses. Third, not all pathways might be well-justified
from a theoretical or statistical point of view. For example, it is suf-
ficient that only one article or expert mentioned a certain option for it
to be incorporated into the multiverse at this point. This inclusion
may be undesirable as it may not reflect the current state-of-the-art
in a particular domain.* To address all these concerns, we suggest
calling on experts again to validate the pathways.

Step 4: Pathway Validation

The purpose of this step is to present experts with the decision cat-
egories derived in the previous step to assess their suitability. It again
takes the form of a survey, and contributors can be recruited via the
avenues presented in Step 2. There might be some overlap between
researchers filling in both surveys, but we do not see that as a prob-
lem (see e.g., the Delphi method, which involves repeatedly consult-
ing the same experts in multiple rounds to reach consensus). Below,
we will first describe what the validation survey could look like, and
then we explain how its outcome can shape the eventual multiverse
analysis.

First, it is important to convey the goal of the survey to the con-
tributors. This explanation should include a brief description of
what a multiverse analysis entails, and its primary purpose in the cur-
rent study (e.g., assessing robustness, examining boundary condi-
tions, hypothesis generation, increasing transparency, and/or
improving a study’s methodology; see Step 1). Contributors are
then presented with all the selected options for a given category
(e.g., handling missing data, dealing with outliers, etc.), and they
judge which option(s) would be appropriate. Contributors would,
for instance, see all possible approaches to handling missing data,
and they have to indicate for each one whether they deem them
appropriate, or not appropriate. Additionally, a third response option
(e.g., don’t know/NA) can be offered for contributors who are unfa-
miliar with a particular category. Subsequently, contributors are
asked to rank-order all the appropriate options from best/most pre-
ferred to worst/least preferred (yet still appropriate), not allowing
ties. This process is to be repeated for all decision categories sepa-
rately, and the top option per category can then be combined to
form a single analysis pipeline per survey respondent.

In the next phase of the survey, contributors get an opportunity to
change the order of the steps. The default order, determined in Step
3, is shown to contributors, but they can rearrange them as they see
fit. Then, contributors are prompted via an open-ended question to
provide feedback or clarification if needed. For instance, they
could indicate that their preferred option was actually not included

(despite the thorough elicitation process), and specify how that
would change their single pathways analysis. Finally, contributors
are asked to rate how confident they feel about their answers and
indicate their level of expertise in that particular research domain.
Note that one can envision several variations of the validation survey
as presented here. Indeed, the current description is meant as a tem-
plate that can be adjusted as researchers see fit.

The same holds for translating the responses to the validation sur-
vey into a final multiverse. One could, for example, only select the
single pathway analysis provided by each respondent, potentially
attaching more weight to pathways from those that indicated high
levels of confidence and expertise (though such self-ratings might
be inaccurate; see e.g., Dunning, 2011). This option is particularly
attractive when the full multiverse from Step 3 is too large to be com-
putationally feasible, and the number of respondents is substantial.
Note that such an approach is conceptually similar to a many-analyst
project (Botvinik-Nezer et al., 2020; Coretta et al., 2023; Hoogeveen
et al., 2023; Silberzahn et al., 2018). Alternatively, one could opt to
only include those data-processing and analysis choices deemed
appropriate by most respondents (e.g., >50%, though one could
again opt to attach more weight to the opinion of respondents with
higher self-rated confidence and expertise). The final multiverse
would then be formed by all compatible combinations of the choices
that meet the employed cutoff.

Which exact cutoff to use might depend on a number of factors,
including the process to select contributors. If one casts a very
wide net, and perhaps recruits contributors with little topical knowl-
edge, then one might expect more variability in the responses, com-
pared to when one targets a very narrow set of experts. In the former
case, opinions may vary more, hence a threshold of 50% might be
too high, whereas in the latter case, the threshold might be too low.
In addition, the resulting multiverse, although presumably smaller
than the full multiverse from Step 3, might still be too large to be com-
putationally feasible. To address this issue, one could increase the
threshold for including a particular data-processing or analysis choice
(e.g., > 60% of respondents considering the choice appropriate
instead of > 50%). Alternatively, one could draw a random sample
of pathways that met the threshold for inclusion, with sample size
depending on the available resources, though one does run the risk
of missing out on pertinent pathways that could shape the results.

After concluding this step, one ends up with the final multiverse of
analysis pipelines. The application of the multiverse to the raw data
as such is not dissimilar from the analyses of any other empirical
study, except that the number of analysis pipelines is (much) larger.

This brings us to the end of the four-step process to develop a
crowdsourced multiverse analysis (see Figure 1 for an overview of
all the steps and actions to be taken). Typically, researchers may
want to additionally summarize the outcomes of a multiverse analysis
in one way or another. For example, Steegen et al. (2016) visualized
the resulting p values via histograms and heatmaps, and one can also
do the same for parameter estimates (e.g., Heyman et al., 2022). The
latter are purely descriptive approaches; if one wants to draw infer-
ences, one could, for instance, consider the previously mentioned

4 The core team could also decide to impose a higher threshold for inclu-
sion. That is, they could decide to only consider options that are mentioned by
at least two sources (e.g., two different survey respondents), though their
independence can be hard to establish, and it still does not entirely prevent
the inclusion of suboptimal pathways.
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specification curve analysis (Simonsohn et al., 2020) or the postselec-
tion inference in multiverse analysis approach (Girardi et al., 2024).
Yet, these are beyond the scope of the present article.

To illustrate the four-step approach to conducting multiverse anal-
yses, we now turn to a worked-out illustration in the domain of psy-
cholinguistics, though the approach can be easily extended to other
domains in the social sciences and beyond.

Case Study

To illustrate the application and usefulness of these multiverse
guidelines, we describe how they were applied to address the follow-
ing research question: do item-level semantic priming effects
robustly correlate across English and German? First, we will provide
some background to situate the research question, and then we will
go through the different steps of the multiverse procedure.

It is well-documented that presenting a stimulus in a semantically
congruent context often facilitates its recognition (but see e.g.,
Rosinski et al., 1975 for a paradigm yielding an inhibitory effect).
For example, people are generally faster to identify dog as an exist-
ing word when they just saw the semantically related word cat rela-
tive to when they saw an unrelated word like car. This phenomenon
is called semantic priming (for reviews about semantic priming see
McNamara, 2005; Neely, 2012).° Though we will not provide an
overview of the different theoretical accounts of semantic priming,
it is commonly assumed that the magnitude of the effect varies
depending on how strongly the prime (cat in the above example)
and target (dog in the example) are related. For instance, cat-dog
may form a more strongly related pair compared to finger—toe,
which ought to result in a larger priming effect as established by
comparing their average response times (RTs) to that of unrelated
baseline pairs like car—dog and chair—toe, respectively. Indeed,
research has suggested that these so-called item-level semantic prim-
ing effects can be predicted based on certain relatedness metrics
(e.g., associative strength; see Hutchison et al., 2008).

If we assume that the degree to which concepts are related is similar
across languages, it stands to reason that there should be some cross-
linguistic stability of item-level priming effects. That is, if translations
of the same stimuli are used (e.g., cat—-dog matched to Katze-Hund in
German), one might expect the resulting item-level priming effects to
be similar. This study aims to examine whether there is evidence for a
relationship between such priming effects across languages, thereby
applying the multiverse guidelines outlined above.

Step 1: Specifying the Research Question(s)

We wanted to examine whether item-level priming effects
obtained in different languages correlate with one another. To test
this assertion, we relied on data from a recent study by Buchanan
et al. (in press; see the Appendix for a more detailed description).
They examined semantic priming across 19 languages, and found
a significant effect, aggregated across stimuli, in all 19 languages.
As we were mainly interested in demonstrating the multiverse guide-
lines, we focused on just two languages, English and German,® but
one could apply similar analyses to all other language pairs.

To the best of our knowledge, no study had yet systematically exam-
ined the cross-linguistic consistency of item-level priming effects.
With that in mind, we opted to first establish whether this relationship,
or absence thereof, is robust via a data multiverse (i.e., we exclusively

focused on data-processing choices, and did not include any alternative
data-analysis pipelines). More specifically, we initially specified a sin-
gle analysis pipeline, inspired by previous studies examining item-
level priming effects (i.e., Heyman et al., 2018; Hutchison et al.,
2008), which included details about inference method (i.e., which
parameter to estimate and which statistical test to perform; see the
Appendix). Consequently, in Step 2, we exclusively elicited different
data-processing pathways. That said, survey respondents could com-
ment on the proposed analysis plan if they deemed it inappropriate.

In sum, the research question we sought to answer via a data mul-
tiverse analysis was whether item-level semantic priming effects are
robustly correlated with one another across two languages, namely
English and German.

Step 2: Pathway Elicitation
Literature Search

The aim of this approach was to extract data-processing pathways
from research on the same or a similar topic. The procedure to search
for relevant literature was similar to that of a systematic review,
except that we were not interested in evaluating the evidence for a
particular claim, but rather to uncover the various data-processing
steps that have been undertaken in different studies.

As we were not aware of any research on the cross-linguistic con-
sistency of item-level priming effects, we broadened the scope of
the literature search to include all research that examined semantic
priming using a continuous lexical decision task (i.e., the paradigm
used by Buchanan et al., in press), and/or research that sought to pre-
dict semantic priming at the item level. Both types of research presum-
ably involve data-processing steps that are suitable for the current data
set and research question. The following search query was used: “pre-
dict semantic priming” OR “continuous lexical decision” “semantic
priming,” which yielded 129 results in Google Scholar and 33 results
in EBSCO. As not all of those records would fit the scope and aim of
our study, we defined a number of criteria which needed to be met (see
Figure 2). In addition, we scanned the papers meeting our criteria for
references to other potentially relevant resources. The authors EB and
TH independently coded the first 10 records, which resulted in the
same decisions, and a refinement of some of the exclusion criteria.
The remaining records were evaluated by a single coder. Ultimately,
this procedure yielded 34 papers from which the data-processing
choices were distilled in the next step.

To facilitate the extraction of the data-processing choices, we cre-
ated a coding scheme involving four broad categories: data exclu-
sions (except outlier analysis), outlier treatment, missing data
treatment, and data transformations. A final fifth category was

5 Semantic priming can also manifest itself as an improvement in terms of
response accuracy. However, the present study will solely focus on response
latency (RT), because accuracy is often so high that priming can be difficult to
detect because of ceiling effects. In addition, using response latencies as the
dependent variable gives rise to many more data-processing decisions (e.g.,
handling outliers), which allows us to clearly illustrate the value of a multi-
verse analysis.

6 We decided to focus on English and German in particular because of their
linguistic similarity, and because Buchanan et al. (in press) had collected a
substantial amount of data for these two languages at the point when we ini-
tiated the current project. Eventually, the data set comprised 8,808 partici-
pants (5,964 in English and 2,844 in German) and 1,000 matched
item-pairs for which a priming effect could be calculated.
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Duplicate records removed (n = 34)

Reports excluded:
Not about semantic priming (n = 53)
Not empirical (n = 14)
Not in English (n = 2)
Record not retrieved or unclear (n = 5)°

»| Full text not retrieved (n = 2)

Records excluded:
Not about semantic priming (n = 1)
Not empirical (n = 3)
Population isn’t neurotypical adults (n
= 5)"
DV isn’'t response time (n = 1)
Task is no AFC involving a key press
(n=6)
No visual presentation of stimuli (n = 5)
No pre-existing words (n = 1)
Not predicting semantic priming at the
item level or CLDT (n = 22)*
Duplicate record (n = 1)

Figure 2
Flowchart of the Process of Identifying Relevant Literature
)
g Records identified from:
= Google Scholar (n = 129)
S EBSCO (n = 33)
g References other screened
) studies (n = 27)
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Records screened
(n = 155)
= Records sought for retrieval
£ (n=81)
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Records assessed for eligibility
(n=79)
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% Studies included (n = 34)
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Note. Exclusion criteria marked with a “+” symbol were introduced/adapted after coding the first 10

records. Exclusion criteria marked with a “*” symbol were added retrospectively to classify records that
could not be included for reasons we did not anticipate in advance. Two exclusion criteria, records removed
for other reasons in the identification phase, and procedure does not emphasize speed, excluding signal to
respond paradigm in the final screening phase, are not depicted as no record was removed for these reasons.
CLDT = continuous lexical decision task; AFC = alternative forced choice; DV = dependent variable.
Figure adapted from “The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic
Reviews,” by M. J. Page, J. E. McKenzie, P. M. Bossuyt, 1. Boutron, T. C. Hoffmann, C. D. Mulrow,
L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw,
A. Hrébjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, ... D. Moher, 2021.
BMJ, 372, Atticle n71. (https:/doi.org/10.1136/bmj.n71). Copyright © 2025 by the authors. https:/www

.prisma-statement.org/. See the online article for the color version of this figure.

created to contain data-processing choices that would not fall into
these main four categories. For each of the five categories, we further
distinguished between processing steps occurring at the level of the
participants, the items, or the trials (Loenneker et al., 2024). For
example, one might exclude data of (a) certain participants (e.g.,
because they did not pass an attention check), (b) certain items
(e.g., because too many participants failed to recognize it as an exist-
ing word), or (c) certain trials (e.g., when the response was incor-
rect). If data were excluded because response latencies, at the
participant-, item-, or trial-level, were too extreme, the respective cri-
teria were classified under outlier treatment.

For each of the 34 selected papers, two coders (i.e., EB and EP)
independently searched the method and results sections (including
potential supplemental material like code) for all data-processing
steps that were performed. For papers with multiple studies, they
selected all studies that fit the research question. The extracted pro-
cessing steps were then grouped into the categories mentioned
above. Subsequently, the coders also organized the data-processing
steps in the order they were carried out if that information was
reported. The initial interrater reliability was 95%. Through discus-
sion, discrepancies were resolved until complete agreement was
reached.
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Elicitation Survey

In addition to the literature search, we sought to elicit pathways via
a survey in Qualtrics. To this end, we invited all collaborators of the
overarching Semantic Priming Across Many Languages project
(Buchanan et al., in press) via email. All collaborators with (self-
reported) experience in analyzing reaction time data and/or experi-
ence with semantic priming research were eligible to fill in the
survey. The invitation also explicitly mentioned that everyone who
completed the survey and a follow-up survey (i.e., the pathway val-
idation survey; see below) would qualify to become a co-author on a
paper describing the outcome of this process (i.e., the present arti-
cle). The study received IRB approval from Harrisburg University
of Science and Technology (Protocol: 20231103).

Besides an eligibility check, the survey comprised an open-ended
question, asking contributors to describe as detailed as possible the
different data-processing steps they would take, in order to answer
the research question. The instructions explained which data-
analysis steps we would subsequently take, but contributors were
also given the opportunity to provide feedback on it, again via an
open-ended question.

The survey yielded 67 responses. The median response time was
30 min, though this might be an underestimation as some respon-
dents might have decided to work on it offline, and only submitted
their answers once they were ready. EP and EB each coded half of
the responses to the survey. Three responses were flagged during
the coding process for (exclusive) reliance on generative artificial
intelligence (genAl) applications such as ChatGPT.” Those
responses were excluded from further analysis.

Structurally, the coding scheme used to process the remaining 64
answers was similar to the one used for the literature review, except
that the outcomes from the literature review were incorporated into
the coding scheme. For example, the literature review yielded the
following participant-level exclusions (not considering response
time-based outliers): removing nonnative speakers, removing partic-
ipants with an error rate above 10% (across trials), removing partic-
ipants with an error rate above 20% (across trials), removing
participants with an error rate above 25% (for nonword trials), and
removing participants who did not significantly perform above chance
(for words and nonword trials separately). These alternatives, as well
as the original criteria used by Buchanan et al. (in press), were added
as codes to the scheme for participant-level exclusions, and we kept
track of whether they reoccurred in contributors’ responses to the sur-
vey. In addition, there was an open-ended option in case new alterna-
tives were suggested in the responses to the survey.

Step 3: Synthesizing Elicited Pathways

The data-processing options derived from the literature search and
the elicitation pathway were subsequently synthesized into a full
multiverse. In total, we identified 18 decisions, comprising between
two and 25 options each. When combined, this resulted in
1,703,116,800 unique pathways. Note that not all of these pathways
necessarily yield a different outcome. For example, when a certain
exclusion criterion fails to exclude any data, all of the corresponding
pathways will yield identical outcomes to the pathways that did not
feature such an exclusion criterion to begin with.

Because it was ambiguous whether transformations ought to be
considered part of the data-processing or analysis stage, we decided

not to include them in the current multiverse. Furthermore, all of the
1.7 billion pathways assumed the same order in which decisions
were taken. The order was based on an informal synthesization of
the input, but in Step 4, contributors had the opportunity to change
the order of the data-processing steps.

Step 4: Pathway Validation
Validation Survey

To verify the extent to which the pathways obtained in the previ-
ous step were endorsed by experts, we conducted a pathway valida-
tion survey using Qualtrics. The study received IRB approval from
Harrisburg University of Science and Technology (Protocol:
MODA45275). For practical reasons, we invited the same researchers
who participated in the pathway elicitation survey, but one could also
opt to use a different sampling procedure. The survey yielded a total
of 56 complete responses. The median response time was 56 min,
though again, it might be an underestimation as some respondents
might have decided to work on it offline.

The survey itself comprised the following sections. First, the
research question was explained in a similar way as in the pathway
elicitation survey. We also explained that contributors had to
judge the appropriateness of a set of data-processing choices that
were thematically clustered. For each option, they could indicate
whether it was appropriate, inappropriate, or whether they did not
know if it would be appropriate or not (see Table Al in the
Appendix for an overview of the resulting response pattern for all
options presented in the survey). Contributors did not have to justify
their choices, though they could leave comments at the end of the
survey. If, for a given decision, they indicated that more than one
option was appropriate, contributors were subsequently prompted
to rank them from best/most preferred to worst/least preferred yet
still appropriate. Figure 3 shows an example to illustrate the proce-
dure, though the example was not provided to contributors in
advance to avoid biasing their answers.

In total, there were 18 thematic clusters of data-processing options,
with the number of options in each cluster ranging from two to 25,
thus mimicking the full multiverse from Step 3.% After the contribu-
tors provided their judgments for all clusters, we showed them their
top option per cluster. We also presented them with a number of deci-
sions that would be required to answer the research question regardless
(i.e., removing nonwords from the data set, and removing filler
words). Additionally, we provided the prespecified data-analysis
steps (i.e., z-transforming RTs, calculating item-level priming effects
per language, and correlating them across languages). Thereafter, we

7 To confirm that those responses were indeed the result of genAl applica-
tions, we contacted all contributors asking whether they recognized the
flagged responses as theirs (we needed to contact all authors because contrib-
utors’ responses were decoupled from their contact information). All three
responses were accounted for and the respective contributors indeed indicated
having used genAl to produce them. We decided to not invite those contrib-
utors for the validation survey, and terminated the collaboration with respect
to the current project.

& One of the data-processing options was worded incorrectly in the valida-
tion survey. More specifically, it concerns the following decision “Across tri-
als: Calculate each participant’s proportion of time outs and remove those
whose proportion is 3 SD below the mean.” The latter part should have
read “above the mean.” As the wording could have caused confusion, we
decided to remove this step from all analyses.
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Figure 3
Example of a Pathway Validation Question

Which option(s) do you deem appropriate? If you want to read the task instructions again,
click here; if you want to inspect a sample of the data, click here: [data][stimuli]

Appropriate Not appropriate Don't know
RTs < 50 ms removed @) (@) O
RTs < 100 ms
removed o ©
RTs < 150 ms
removed O o O
RTs < 160 ms
removed o o O
RTs <200 ms
removed o o ©
RTs < 250 ms
removed O o O
RTs < 300 ms
removed o o ©
Keep trials regardless O O O

Which option(s) do you deem appropriate? If you want to read the task instructions again,
click here; if you want to inspect a sample of the data, click here: [data][stimuli]

Appropriate Not appropriate Don't know
RTs < 50 ms removed [ O O
RTs <100 ms
removed ® O O
RTs < 150 ms
removed L4 O ©
RTs < 160 ms
removed ® O O
RTs <200 ms
removed ® O O
RTs < 250 ms
removed o ® ©
RTs < 300 ms
removed O ® O
Keep trials regardless O [ ] O

Order the options you deemed appropriate from best/most preferred to worst/least
preferred, yet still appropriate by assigning a number. So, the best/most preferred option in
your opinion should get number 1, the second best should get number 2 (and so on
depending on the number of options you selected in the previous step).

RTs < 50 ms removed

RTs < 100 ms removed
RTs < 150 ms removed
RTs < 160 ms removed

RTs < 200 ms removed

Note. First, participants see a number of options that are grouped themati-
cally (top panel). If they indicate that multiple options are appropriate (middle
panel), they are subsequently asked to rank order them (bottom panel). If only
one option is considered appropriate, the ranking question is skipped. RTs =
response times. See the online article for the color version of this figure.

prompted the contributors to specify the order in which to carry out all
of those different steps by numbering them sequentially (i.e., with “1”
indicating the first step, “2” indicating the second, etc.). The different
options appeared in a default order corresponding with the sequence
in which the clusters were presented, which in turn was based on the
order derived in Step 3. That being said, contributors still had to fill in
the numbers themselves and, therefore, also had the opportunity to

rearrange the steps. Once again, contributors were also given the
chance to clarify or comment on their answers and/or on the data-
analysis steps, but we did not end up including alternative data-
analysis pipelines for the present study.

Contrary to the pathway elicitation survey, we did not verify con-
tributors’ eligibility, as they already passed this check. However, we
did ask five comprehension questions, related to the study’s goal, at
the beginning of the survey. If contributors answered a comprehen-
sion question incorrectly, the right answer was shown to clarify the
study’s goal. In addition, we also asked contributors at the end of the
survey to rate their expertise in the subject area as well as the confi-
dence in their answers on a 5-point scale (from very low to very
high). Figure 4 summarizes the results of these proficiency ques-
tions. We did not include any attention checks as they might induce
respondent irritation (Silber et al., 2022), and especially in the cur-
rent context, we deemed them unnecessary.

Multiverse Analysis

We conducted two types of analyses, but one could envision a
number of other variants. The first one is very similar to the many-
analyst approach (Botvinik-Nezer et al., 2020; Coretta et al., 2023;
Hoogeveen et al., 2023; Silberzahn et al., 2018) in which researchers
are given a data set and independently seek to answer a particular
research question by performing an analysis they deem (most) suit-
able. However, contrary to the typical many-analyst approach, con-
tributors did not have to do the analyses themselves. Instead, the core
team performed the analyses based on contributors’ input, that is,
their preferred choice for each decision carried out in the order
they indicated. Another difference with a typical many-analysts pro-
ject is that all potentially relevant options are laid out for the contrib-
utors, whereas in a many-analyst project, everyone has to
independently identify all the decisions, and as a consequence,
might overlook some options.

In general, the current approach may be more feasible for contrib-
utors, as it shifts most of the “burden” to the core team. That being
said, the current approach also has the downside that certain incon-
sistencies in the data-processing and analysis pipeline are more
likely to occur compared to when contributors perform the entire
analysis themselves. For example, three out of the 56 pipelines did
not have the calculation of the correlation as the final step, which
is not consistent with the aim of the analysis, hence these pipelines
were removed. Of the remaining 53 pipelines, 52 were unique (it is
possible that two respondents collaborated and filled in the survey
twice, even though the instructions warned against this). Twenty
of the 53 pipelines contained a minor inconsistency or ambiguity.
For example, the step involving the removal of nonwords should
not occur before any step that involves nonwords in some way
(e.g., removing participants that do not perform significantly
above chance on nonword trials). Even though it is possible to obtain
a correlation between item-level priming effects, the steps to get
there are not entirely consistent in this example, or they are at least
somewhat ambiguous or convoluted (e.g., one could in theory first
identify participants who do not perform above chance on nonword
trials, then remove nonwords, and subsequently remove those partic-
ipants). In all such cases, the order of the steps as indicated in the
validation survey was preserved, which entails that certain decisions
essentially became moot. Continuing with the above example,
because it is not possible to compute participants’ accuracy on
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Figure 4

Distribution of Contributors’ Scores/Answers on the Proficiency Questions

Self-rated expertise

Self-rated confidence

Very low
Low
Moderate
High
Very high

DODDEm

Number of correctly answered comprehension questions

B 2 correct
E 3 correct
O 4 correct
O 5 correct

Note.

nonwords trials after removing nonwords trials, no participants got
omitted from the analyses due to poor performance on nonword tri-
als in this particular pathway. Taken together, we calculated the
Pearson correlation between item-level priming effects based on
the 53 data-processing and analysis pipelines that had the calculation
of the correlation as the final step, regardless of whether all other
steps were internally consistent/unambiguous.

The results of this many-analyst type approach yielded correla-
tions that ranged from .20 to .33 (see Figure 5 for a distribution of
the correlations). The null hypothesis of a zero correlation could
be rejected in all pathways (ps <.05; SEs ranged from 0.028 to
0.031). The consistency of the steps did not seem to be related to
the outcome (see the left panel of Figure 5). Figure 5 also shows a
cluster of correlations that appear to be somewhat smaller than the
rest. Although it can be difficult to exactly pinpoint the underlying
reason(s), all those pathways (and a few others) have in common
that, at some point, a Silverman’s test is conducted to remove partic-
ipants with multimodal RT distributions (see the right panel of
Figure 5). That is not to say that this step should not be taken,
here or elsewhere, but it is noteworthy nonetheless.

For a second set of analyses, we selected all options that were
endorsed as appropriate in the validation survey, regardless of their
ranking, by a majority of the contributors (i.e., by at least 29 out of
56). We implemented all data-processing choices meeting this thresh-
old in two different orders. The first order corresponded with the
default order used in the survey. The second order involved perform-
ing the z-transformation of RT's before excluding filler words and non-
words rather than after excluding them, which corresponds with the

See the online article for the color version of this figure.

order used by Buchanan et al. (in press). This process resulted in
two multiverse analyses (one per order), each comprising 11,520 path-
ways. Every pathway yielded an estimate of the correlation coefficient,
which ranged from .27 to .31 (see Figure 6 for a distribution of the cor-
relations). The null hypothesis of a zero correlation could be rejected
in all pathways (ps < .05; SEs ranged from 0.029 to 0.030). So, even
though this second set of analyses comprised many more pathways,
the range of outcomes was considerably narrower than in the many-
analyst type approach. This discrepancy could partly be explained
by the fact that the option to perform a Silverman’s test was not
endorsed by a majority of the respondents, and hence was not included
in any of the 2 x 11,520 pathways.

In addition, one might wonder what the impact is of particular deci-
sions on the outcome. This question is of course especially relevant
when the multiverse analysis’ goal would have been to establish boun-
dary conditions of an effect, but even in the current case, where the
objective was to examine the robustness of item-level priming, it
might be interesting to consider. For instance, Figure 6 shows that
the correlations from the paths following the default order are slightly
higher compared to those following the alternative order.

Figure 7 shows similar plots for the other decisions of the multi-
verse. The decision that seemingly impacted the outcome the most
involved the exclusion of items based on accuracy. If one only
includes items in the analyses with an error rate of 25% or less,
the correlations are slightly higher compared to when one only
includes items with an error rate of 50% or less. In other words,
the stricter criterion yields slightly higher correlations, which
might be because items with a high error rate are not well-known
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Figure 5
Outcome of Each Respondent’s Single Pathway Analysis

A.

.35

.30

254

Pearson correlation

.20

Consistency paths Inconsistent ®  Consistent

Note.

.35+

.30

.25+

Pearson correlation

.20

Silverman's test Included ® Not included

Panel A makes a distinction between pathways that are internally consistent versus inconsistent. Panel B distinguishes between pathways that feature

Silverman’s test versus those that do not. See the online article for the color version of this figure.

by a substantial number of participants, thus producing less consis-
tent priming effects. Note that stricter criteria do not result in higher
correlation estimates in general. For example, pathways that involve
excluding trials with RTs above 2,500 ms produce slightly lower
correlations overall compared to pathways that only exclude trials
when the RTs are above 3,000 ms. That said, differences are fairly
small overall, suggesting the effect is robust to different data-
processing choices.

Note that we did not include alternative data-analysis pipelines for
the present study. That is not to say that the suggestions offered by the
respondents were not insightful or relevant. However, it did prove to
be challenging to pinpoint the specific steps necessary to address the
exact same research question in many cases. We would therefore
advise researchers interested in extracting data-analysis pipelines to
urge respondents to be very specific, and even ask to provide some
analysis code. Furthermore, we also did not weight the pathways dif-
ferently (e.g., based on contributors’ self-rated expertise, the appropri-
ateness judgements, or the ordering of the different options), but that
could be potentially relevant as well.

Concluding Remarks

The correlation between item-level priming effects across English
and German proved to be robust to various alternative data-processing
choices. The magnitude of the correlation turned out to be small, yet
consistently above zero. There are a number of explanations for
why the correlation is quite low, most notably it could be attenuated
by the reliability of item-level priming effects within a language

(Heyman et al., 2018), but that is beyond the scope of the current
application. Note that we observed fairly little variability in the out-
come, which is somewhat atypical for these kinds of analyses (see
e.g., Aczel et al., in preparation). One potential explanation is the
size of the data set both in terms of number of participants (i.e.,
8,808) and number of item-pairs (i.e., 1,000). If the sample size is
large, then exclusion criteria, which make up the bulk of the current
multiverse, might have only a limited impact.

In addition, the current multiverse exclusively focused on data-
processing choices, and did not consider alternative data-analysis path-
ways. It is possible that the latter would have yielded more heteroge-
nous outcomes. To our knowledge, no study has yet systematically
examined whether certain type of pathways (data-processing or analy-
sis) generally produce more diverse results. That said, studies that have
conducted a pure data multiverse, like we did here, have shown
substantial variability in the outcomes (e.g., Steegen et al., 2016).
Hence, multiverse analyses exclusively focusing on data-processing
choices do have the potential of revealing a lack of robustness. So per-
haps the more parsimonious conclusion in this case is that there simply
is not a lot of uncertainty, because of the (unusually) large sample size.
Consequently, the outcome of the present multiverse analysis might
not be representative for all studies within social sciences; yet, the
steps outlined here arguably translate easily to different domains.

Multiverse Researcher Degrees of Freedom

One of the reasons for performing a crowdsourced multiverse
analysis is to limit some of the subjectivity involved in a regular
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Order of steps

Default order

Figure 6
Distribution of the Pearson Correlation Across All 11,520 Pathways
7504
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2
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3 Bl |:| Alternative order
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Note. The green (light gray) bars show the outcomes of the multiverse analysis in which the order of the steps corresponded with that of the validation survey.

The blue (dark gray) bars show the outcomes for an alternative order where the z-transformation is carried out before excluding fillers and nonwords. See the

online article for the color version of this figure.

multiverse analysis. The decisions to add or omit particular pathways
can substantially affect the outcome. For example, an effect might
appear more or less robust depending on the kind of pathways that
are pursued or ultimately not considered. As researchers might dis-
agree about the appropriateness of particular data-processing and
analysis pathways (see e.g., Chalkia et al., 2021; Schiller et al.,
2020), the outcome of a regular multiverse analysis might be viewed
as idiosyncratic to a certain extent. In contrast, crowdsourcing a mul-
tiverse analysis aims to find a common ground in terms of which
pathways to include. In that sense, it removes subjectivity, but
some researcher degrees of freedom still remain.

For one, the verbal descriptions of choices in the elicitation step
need to be categorized, and they also might require some tweaking
in order to clearly convey their meaning to contributors filling in
the validation survey. Similarly, the order in which to carry out the dif-
ferent steps might need to be specified by the core team, at least in the
synthesization phase, to offer a framework for presenting all the differ-
ent decisions in the validation survey. In addition, the verbal descrip-
tions of the various steps require translation to analysis code, but there
might not always be an unambiguous one-to-one mapping. Finally,
after having established all the pathways, there are still a number of
ways to distill and present the outcome (e.g., whether to assign differ-
ent weights to pathways and if so how, what threshold to use for
including particular options in the final multiverse).

Taken together, even though the current crowdsourcing approach
offers a framework to derive a community-endorsed multiverse anal-
ysis, it does not completely remove all subjectivity. One could fur-
ther restrict the flexibility associated with the above-mentioned
researcher degrees of freedom by preregistering certain choices
(e.g., what threshold to use for including particular options in the
final multiverse), but one would still not be able to cover all aspects.

For example, translating the verbal descriptions of the different steps
into analysis code will still have an element of subjectivity, regard-
less of whether one would preregister that process.

Crowdsourced Multiverse Analysis Versus Many-Analyst
Procedure

Throughout this tutorial, we have identified some similarities and
differences of the current crowdsourced multiverse approach and the
many-analyst procedure. To reiterate, a many-analyst project typi-
cally involves different (teams of) researchers carrying out one anal-
ysis to answer a particular research question independently from one
another. The core team only oversees the process, they may check
the analytic reproducibility of the analyses, and they report the out-
comes. In contrast, in the crowdsourced multiverse approach intro-
duced here, the core team sets-up surveys, conducts a systematic
review (optional), and carries out the analyses themselves.

Both of these approaches have strengths and weaknesses. For one, a
many-analyst study may involve a higher subject matter knowledge
threshold for potential contributors, which might attract less interest
overall, and also result in certain perspectives being overrepresented.
Particularly early career researchers with a limited network might
struggle to attract contributors (though this could also be true to a
lesser degree for a crowdsourced multiverse analysis). That said,
such higher demands might also improve the quality of the output,
as it would be more difficult to mask one’s inexperience analyzing
the data of interest. Furthermore, if contributors actually perform the
data-processing and analysis themselves, rather than the core team,
it might lead to fewer inconsistencies, or details getting lost in trans-
lation (i.e., analysis code might be less ambiguous than verbal descrip-
tions). On the flip side, the crowdsourced multiverse approach
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Figure 7

Distribution of the Pearson Correlation for Each of the Decisions in the Multiverse Analysis (Besides the Order of the Decisions)
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Note.

involves presenting contributors with input from others gathered in an
earlier stage, which might make them realize that their own (initial)
approach overlooked certain aspects, thus improving the quality of
the resulting pathways.

Depending on how they are implemented, both approaches can
also be made to resemble one another more closely. For example,
in the current crowdsourced multiverse approach, we also asked
researchers to pick a single, most preferred pathway, which then
results in a many-analyst-type outcome (see Figure 5). Conversely,
in a many-analyst study, the core team could additionally decide
to identify all the individual steps from the analysts’ input, and sys-
tematically combine them to form a complete multiverse (Aczel et
al., 2021). However, the latter approach would still lack the notion
that contributors evaluate the appropriateness of each other’s sug-
gestions in the validation survey, which is an attractive feature of a
crowdsourced multiverse analysis.

Taken together, both approaches serve important functions in the
scientific ecosystem. We are not advocating to always opt for the
crowdsourced multiverse approach over the many-analyst approach
(or vice versa). Depending on the context, one might opt for one or
the other. If feasibility in terms of attracting potential contributors is
an important factor, then the current crowdsourced multiverse
approach might be particularly well-suited.

Pearson correlation

Pearson correlation

See Table Al in the Appendix for all abbreviations. RT = response times. See the online article for the color version of this figure.

Role of genAl

A potential concern, which applies to both crowdsourced multi-
verse and many-analyst approaches, is the possibility that contribu-
tors may use genAl tools like ChatGPT. In our case study, we
discarded three responses to the pathway elicitation survey, because
they were (almost) exclusively generated by ChatGPT. The perfor-
mance of such genAl tools can be considered impressive, at least
in certain domains, including producing analysis code (e.g.,
OpenAl, 2023, 2024). Hence, one might wonder whether it would
actually be problematic if contributors were to rely on it. At least
in the current case study, the genAl output was fairly generic, and
not that useful, but that could be because the prompt itself was not
specific enough. However, as the performance of such tools contin-
ues to improve, it is entirely possible that they could (eventually)
provide valuable input and even become pseudocontributors in
their own right.

Still, we would argue that contributors should not rely on genAl
tools in the context of many-analyst or crowdsourced multiverse
studies, at least when it comes to generating ideas and formulating
key decisions. They should have enough topical knowledge to pro-
vide input independently. If instead, they need to rely on genAl
tools, they presumably do not qualify as experts to begin with.
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Relatedly, contributors to these kinds of projects are typically offered
co-authorship in return for their participation. If merely querying
ChatGPT would be considered sufficient, it would fundamentally
erode the value of co-authorship. Another reason for not allowing
responses (exclusively) produced by genAl, is that it might delude
the diversity of pathways that does exist. Ultimately, it is up to the
core team to decide how to handle this, but clear communication
to contributors is key.

Time Investment and Resource Allocation

Another potential objection to the four-step approach of conduct-
ing multiverse analyses outlined in this tutorial (which also applies
to many-analyst studies), is that it takes a long time compared to
“regular” multiverse analyses or other research projects. The current
case study spanned approximately 15 months, though the actual time
spent working on the project was less than that.” One could, of
course, opt for a more condensed approach by not undertaking the
systematic review or by not conducting the pathway elicitation sur-
vey in Step 2. However, we used both methods in order to provide a
complete picture of the four-step approach, resulting in a more com-
prehensive multiverse than when we would have used only one
method to elicit pathways. That is, some options that were ultimately
endorsed by more than half of the contributors in the validation sur-
vey were only mentioned in the elicitation survey (e.g., removing
RTs <50 ms), or only emerged from the literature review (e.g.,
removing RTs >2,500 ms).

In any case, conducting a multiverse analysis requires a substan-
tial time investment. We argue that this investment is worthwhile
because the end-product is a community-endorsed multiverse that
could be reused for future studies within the same domain. At the
same time, this issue fits in a broader discussion about how to allo-
cate resources to determine the reproducibility, replicability, and
robustness of particular findings (e.g., Isager et al., 2024, 2023)
and should therefore be considered on a case-by-case basis, by ask-
ing, “Does phenomenon X really merit such a thorough investiga-
tion, or are our efforts better spent elsewhere?” It is also important
to point out that a multiverse analysis involving a single data set is
no replacement for a replication study. Even if an effect appears
robust in a multiverse analysis, it might not generalize to a different
sample or context. Taken together, it is beyond the scope of the pre-
sent article to suggest when to apply multiverse analyses; instead, we
provide a detailed step-by-step approach for how to perform such an
analysis in a rigorous fashion.

° Note that this does not include the original data collection of Buchanan
et al. (in press). It does include the time required to run all the analyses,
which in this case was about 10 days. It should be noted though that (a)
the current data set is considerably larger than the average data set in psychol-
ogy, and (b) we did not seek to optimize the runtime (e.g., by relying on high-
performance computing architecture). If the runtime would be too long, one
could consider using pilot data or a sample of the data to identify potentially
relevant choices. In a next step, one could then apply the reduced multiverse
to the actual (complete) data set.
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Appendix

Explanation of the Case Study Including the Analysis Pipeline

Research Question

The study revolved around semantic priming. In general, people are
faster to recognize a target (e.g., dog), when it is preceded by a related
prime (e.g., cat) compared to an unrelated prime (e.g., car). It is often
assumed that the magnitude of the priming effect varies depending on
how strongly the prime (cat in the above example) and target (dog in
the example) are related. For instance, cat-dog may be a more strongly
related pair than finger—toe is. In this study, we sought to examine
whether such item-level priming effects are stable across languages.
More specifically, if items exhibit a strong priming effect in
English, do they also exhibit a strong priming effect in German, and
vice versa for items yielding weak priming effects? We only focused
on priming effects in terms of response time, not accuracy.

Study Procedure

To answer this question, we relied on data from a recent study by
Buchanan et al. (in press), which investigated semantic priming
across 19 languages using equivalent, translated stimuli.
Participants (adults) had to perform a so-called continuous lexical
decision task. On each trial, participants saw a letter string, which
either formed an existing word in the language of the participant
or a nonword. Participants needed to decide as quickly and accu-
rately as possible whether the letter string was an existing word by
pressing either Z or/on a QWERTY keyboard (or a similar pattern
on the native language keyboard). When no response was provided
within 3 s, the trial was automatically terminated. Participants were

presented with 10 practice trials, followed by a total of 800 test trials,
split into blocks of 100, using an intertrial interval of 500 ms. After
each block, participants could take a break. There were 400 word tri-
als and 400 nonword trials. 150 word trials involved a critical target
(e.g., dog), half of which were preceded by a related prime trial (e.g.,
cat), and the other half by an unrelated prime trial (e.g., car). The
remaining trials were fillers. Participants saw a particular stimulus
(filler, prime, or target) only once during the study, and whether a
given target was preceded by its related or unrelated prime was deter-
mined at random.

Analysis

Response times were z-transformed for each participant
separately (i.e., each participant’s arithmetic mean response time
was subtracted from their response time for each individual trial,
and the result was divided by the participant’s standard deviation).
Next, we separated related and unrelated trials for each target,
after which we subtracted their arithmetic mean z-transformed
response times (aggregated across participants), for example:

ZRTecar—dog — ZRTcar—dog- This step was done for each target to cre-
ate item-level priming effects. The resulting item-level priming
effects based on the English data were correlated (i.e., Pearson’s
r) with the equivalent item-level priming effects based on the
German data. The point estimate of the correlation coefficient, its
95% confidence interval, and the p value (HO: p = 0; H1: p > 0)
served as the main outcome of interest to answer the research
question.
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Table A1
Response Pattern for Each Potential Multiverse Option, Expressed in Percentages (N = 56)
Not Don’t
Option Appropriate appropriate  know
Exclusion age
Remove participants younger than 18 84 12 4
Keep participants regardless 36 55 9
Exclusion language
Remove nonnative speakers 89 7 4
Keep participants regardless 27 70 4
Exclusion multimodal
Exclude participants with multimodal RT distribution according to 32 18 50
Silverman’s test
Keep participants regardless 50 21 29
Exclusion number of trials
Remove participants with fewer than 100 trials 80 20 0
. Keep participants regardless 48 50 2
§ Exclusion same responses
g Remove participants who always use the same response button 93 7 0
o Keep participants regardless 9 88 4
g Exclusion alternating responses
. p Remove participants who always alternate responses after every trial 89 5 5
if ~;—Ju (word, nonword, word, nonword, etc.)
f) —g Keep participants regardless 16 75 9
g £ Exclusion participants accuracy
g 8 Across trials: participants with an error rate above 10% removed 36 59 5
s ] Across trials: participants with an error rate above 20% removed 46 48 5
g E Across trials: participants with an error rate above 40% removed” (excl40) 71 25 4
3 @ Across trials: participants with more than 70% of the trials being errors or 89 7 4
3,3 T;‘ time-outs are removed® (excl70)
= ;[J Across trials: calculate each participant’s accuracy and remove those 84 12 4
g = 5 whose accuracy is 3 SD below the mean® (excl3SD)
S g Across trials: calculate each participant’s accuracy and remove those 55 12 32
5 = whose accuracy is more than three scaled MAD above and below the
I < median accuracy, with scaled MAD defined as ¢ x median
- 20 {abs[accuracy-median(accuracy)]}, where ¢ = —1/[sqrt(2) x erfcinv
S 5 E (3/2)]* (excIMAD)
5 = For nonwords: participants with an error rate above 25% removed” 55 38 7
Z8E (excl25NW)
o 5 For words: participants with an error rate above 25% removed” (excl25W) 59 36 5
_: g Per lexical status (words vs. nonwords): participants with an error rate above 61 30 9
© 3 30% for either lexical status are removed® (excl30WNW)
1;) = Per lexical status (words vs. nonwords): participants with an error rate 55 25 20
:::u i above x% removed, where x is determined based on a one-sided
= £ proportion test to see whether participants performed above chance
§ :Es' (o level = .05, chance level means p = .50)* (exclProptest)
4 2 Keep participants regardless 21 75 4
% 4 Exclusion items accuracy
g < Across trials: items with an error rate above 25% removed® (excl25) 52 43 5
'g o F Across trials: items with an error rate above 50% removed® (excl50) 86 11 4
- é e Keep items regardless 38 59 4
g Exclusion trials accuracy
=2 Exclude trials with an incorrect response 75 21
= Exclude trials with an incorrect response and trials following an 32 57 11
incorrect response
Keep trials regardless 29 64 7
Exclusion first trial
Exclude the first trial of each block® (exclFirstTrial) 61 30 9
Keep trials regardless® (keepFirstTrial) 73 23 4
Exclusion negative RTs
Exclude negative RTs 82 11 7
Keep trials regardless 20 71 9
Outliers participants short RTs
Across trials: remove participants who responded quicker than 250 ms on 57 32 11
more than 25% of the trials® (exc125250)
Keep participants regardless® (keep25250) 57 36 7
Outliers participants timeouts
Across trials: remove participants with more than 50% time out trials 84 12 4

(i.e., responses outside of the 3 s window)
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Table A1 (continued)

Not Don’t
Option Appropriate appropriate  know
Across trials: calculate each participant’s proportion of time outs and 68 29 4
remove those whose proportion is 3 SD below the mean
Keep participants regardless 34 62 4
Outliers participants long RTs
Across trials: calculate each participant’s mean RT and remove those 39 52 9
whose mean RT is 2 SD above the grand mean
Across trials: calculate each participant’s mean RT and remove those 62 29 9
whose mean RT is 2.5 SD above the grand mean® (exclPart2.5SD)
Across trials: calculate each participant’s mean RT and remove those 52 18 30
whose mean RT is more than three scaled MAD above and below the
median of participant’s mean RTs, with scaled MAD defined as
¢ x median{abs[mean RTs-median(mean RTs)]}, where
¢ = —1/[sqrt(2) x erfcinv(3/2)]* (exclParttMAD)
) Keep participants regardless” (keepPart) 54 43 4
b5 Outliers items long RTs
5 Across trials: calculate each item’s mean RT and remove those with a 62 34 4
3 mean RT of 2.5 SD above the grand mean® (excllt2.5SD)
L Keep items regardless® (keeplt) 61 38 2
:‘ Outliers trials short RTs absolute
f '?u RTs <50 ms removed® (excl50ms) 84 11 5
3 ;f RTs <100 ms removed® (excl100ms) 86 11 4
g E RTs <150 ms removed® (excl150ms) 70 20 11
5 3 RTs <160 ms removed® (excl160ms) 61 29 11
= = RTs <200 ms removed® (excl200ms) 52 36 12
£ § 3 RTs <250 ms removed 32 54 14
g = RTs <300 ms removed 18 71 11
5272 Keep trials regardless 23 71 5
f‘ < Outliers trials long RTs absolute
82 2 RTs >1,000 ms removed 12 75 12
273 5 RTs >1,500 ms removed 25 64 11
2 f RTs >1,600 ms removed 25 66 9
; < RTs >2,000 ms removed 43 50 7
C: 5 RTs >2,500 ms removed” (excl2,500ms) 54 39 7
s E RTs >3,000 ms removed” (excl3,000ms) 79 18 4
5 S Keep trials regardless 30 64 5
{% g Outliers trials relative
0 2 Across trials: 5% fastest and 5% slowest RTs are removed 27 64 9
= g Across trials: RTs 4+ 2 SD from the mean are removed 23 64 12
ey = Across trials: RTs + 2.5 SD from the mean are removed 48 43 9
Z‘) f Across trials: RTs + 3 SD from the mean are removed® (exclTrial3SD) 61 30 9
< =L Across trials: RTs + 3 SD from the mean are replaced by the mean + 3 20 66 14
B o SD (i.e., the end of the distribution)
%‘ S Across trials: RTs beyond third quartile + 3 x interquartile range are 30 39 30
23 2 removed
] : Per item: RTs + 2.5 SD from the item-specific mean are removed 48 38 14
E = Per item: RTs + 3 SD from the item-specific mean are removed® 52 36 12
858 (exclIt3SD)
<3 = Per item: RTs + 2 SD from the item-specific mean are replaced by the 14 68 18
é E] mean + 2 SD (i.e., the end of the distribution)
=2 Per participant: remove 5% fastest and 5% slowest RTs 27 59 14
&= Per participant: RTs + 2 SD from the participant-specific mean are 23 68 9
removed
Per participant: RTs + 2.5 SD from the participant-specific mean are 46 45 9
removed
Per participant: RTs + 3 SD from the participant-specific mean are 55 32 12
removed” (exclPart3SD)
Per participant: RTs + 5 SD from the participant-specific mean are 48 39 12
removed
Per participant: RTs + 2 SD from the participant-specific mean are 7 77 16
replaced by the mean + 2 SD (i.e., the end of the distribution)
Per participant: RTs + 2.5 SD from the participant-specific mean are 12 70 18
replaced by the mean + 2.5 SD (i.e., the end of the distribution)
Per condition (related vs. unrelated): RTs + 2.5 SD from the 25 62 12
condition-specific mean are removed
Per condition (related vs. unrelated): RTs beyond third quartile + 20 66 14

1.5 x interquartile range are removed

(Appendix continues)
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Table A1 (continued)

Not Don’t
Option Appropriate appropriate  know
Per condition (related vs. unrelated): RTs + 2 SD from the 9 80 11
condition-specific mean are replaced by the mean + 2 SD
(i.e., the end of the distribution)
Per condition (related vs. unrelated) and item combination: RTs + 2.5 SD 27 57 16
from the condition-by-item specific mean are removed
Per condition (related vs. unrelated) and participant combination: 18 70 12
RTs + 2 SD from the condition-by-participant-specific mean are removed
Per condition (related vs. unrelated) and participant combination: 25 59 16
RTs + 2.5 SD from the condition-by-participant-specific mean are removed
Per condition (related vs. unrelated) and participant combination: RTs + 3 32 54 14
SD from the condition-by-participant-specific mean are removed
Per block (of 100 trials) and participant combination: RTs + 3 SD from 30 50 20
the block-by-participant-specific mean are removed
Keep trials regardless 32 61 7

Note. RT =response time; MAD = median absolute deviation.

#Options that were eventually included in the multiverse and their abbreviations are included in parentheses.
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